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The internal waves produced by a moving body are generally longer in the 
direction of motion than the corresponding surface waves. This difference is 
accentuated when the density variation is slight and the body velocity is large 
in which case a very long towing tank may be required for the simulation of 
a steady-state condition. The following theoretical study of transient waves is 
intended as a step in relating test conditions and requisite towing-tank sizes. 

A source-sink pair travelling for a finite time is used to represent the restricted 
motion of a body in a tank. The approximate length and volume of the body are 
fixed, but its precise shape (somewhat irregular and slightly time dependent) 
is assumed to be of secondary importance and is not calculated here. The density- 
stratified fluid is assumed to have a constant Brunt-V&isalii frequency. 

A solution in the form of a triple sum over the tank eigenfunctions applies 
quite generally for the internal wave system (neglecting surface waves and the 
potential-flow-type solution near the body). Examples covering the large-scale 
structure of the flow field have been solved for two values of an approximate 
similarity parameter. The value of the similarity parameter indicates how closely 
steady-state conditions are approached. The first (larger) value chosen produces 
a well-defined quasi-steady state near the body with transient fluctuations of 
the order of & 10%. The second (smaller) value gives a poorly defined quasi- 
steady state with fluctuations of the order of & 50 %. More elaborate studies 
varying the tank length, width and depth could be made by programming the 
calculations. 

The effect of a collapsing wake has not been considered here, but might possibly 
be treated by similar methods. 

1. Introduction and preliminary description of methods? 
SigniJicance of the transient problem 

In  studying theoretically the internal waves created by a moving body in a tank 
of infinite length it was observed that characteristic wavelengths in the direction 
of motion may be very much greater than the body length. In  such cases the 
asymptotic (far-field) solutions may apply only at very large distances behind 
the model. The internal wave system developed might then be altered by the 

t See appendix for remarks on the choice of methods. 
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restricted length of an actual towing tank. To investigate this effect a transient 
problem must be solved. 

The problem studied here is the effect of moving a body at  constant velocity 
for a prescribed distance in a tank of finite dimensions. The body is represented 
by a source-sink pair on the line of motion. The approximate size and length of 
the body are thus fixed, but the precise shape (somewhat irregular and slightly 
time dependent) is assumed to be of secondary importance, and is not calculated 
here.t 

The pulsating moving source 

It is necessary to construct a source which moves through the fluid a t  constant 
velocity, but has zero strength except for a prescribed time. Such a source can 
be constructed from pulsating sources whose outflow varies in a simple harmonic 
fashion with time. A Fourier integral process with integration over all fre- 
quencies of pulsating sources will later be used to give the required source of 
finite lifetime. 

Construction of a moving pulsating point source 

To construct a point source in the tank we first divide the fluid by passing an 
imaginary horizontal plane through the  source location, and we consider 
separately periodic solutions of the partial differential equation in the upper 
and the lower fluid. These solutions are chosen so that pressure is continuous 
across the plane but vertical velocity is not. Thus continuity is not satisfied and 
periodic distributions of source strength appear in the plane. 

These distributions are adjusted to have the form of standing waves (in the 
moving co-ordinate system) of fluid-particle velocity normal to the plane. The 
sources created will then be of conventionall type (i.e. giving the illusion of 
motion by activating in sequence a set of stationary sources along the line of 
motion; see Garrick 1957). This choice ensures that the source-sink pair ulti- 
mately used will produce a body whose shape is almost fixed throughout its 
travel. 

Wavenumbers in both the lateral and longitudinal directions are quantized 
to discrete sets (since there are both end walls and side walls). By summing 
over these wavenumbers with a double Fourier series, a doubly infinite array 
of delta functions is constructed. This represents a moving pulsating point 
source with a doubly infinite image system. 

The complete image system 

The infinite set of lateral images immediately provides planes of symmetry on 
which the tank side walls can be placed. To obtain planes of symmetry in which 
the end walls can be inserted is a little more difficult, since the body changes its 
distance from the end walls. For this reason it is necessary to superimpose on the 
forward-moving system a similar system moving in the opposite direction. Then 

t See appendix. 
:[ Moving pulsating sources are of many types. In  a previous paper (Graham & Graham 

1971 b)  there is some discussion of this in comexion with acoustical problems. 
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halfway between a forward-moving body and a backward-moving body (or 
image) there will be a plane of symmetry at  rest with respect to the Auid in which 
an end wall can be inserted. 

The body moving at uniform velocity for aJinite time (complete solution) 

Using a Fourier integral process and integrating over all frequencies a source of 
constant strength, existing for a finite time, is constructed. This source has the 
image system previously discussed, and so may be regarded as a source which 
moves for a prescribed time or distance in a tank with end walls as well as side 
walls. The addition of a displaced sink then gives our approximate representation 
of a submerged body which starts moving at a particular time, moves through 
a given distance at  uniform velocity, then stops. The shape of this body is not 
affected by the transient nature of the source and sink. However, the shape does 
vary somewhat with time because of the changing proximity of the end walls 
and because of very short wavelength, transient internal waves. 

The solution now available is a ‘particular integral’ for the problem. The most 
general solution must also include a ‘ complementary function ’ made up of the 
most general combination of eigenfunctions for the tank as a whole. The 
particular-integral solution can be evaluated at  large negative times by asymp- 
totic methods. This yields a unique combination of eigenfunctions. Since the fluid 
in the tank must be completely undisturbed at large negative times (i.e. before 
the body is moved), the complementary solution must merely cancel out this 
unique combination of eigenfunctions. The complete solution is now determined. 

Discussion of the complete solution 

The complementary function was chosen to cancel the particular integral at 
large negative times, since the fluid must be completely undisturbed then. 
However, the fluid is also undisturbed at  any time before the body is put in 
motion, so the asymptotic evaluation of the particular integral must be pre- 
cisely correct until the body motion starts. Similarly the asymptotic evaluation 
of the complete solution at large positive times must be exact at any time after 
the body motion stops. This materially simplifies the theoretical results for wave 
motions in the tank after the body has come to rest. 

The reason for this simplification is that immediately after the body stops 
moving the fluid motion in the tank must be composed entirely of the eigenfunc- 
tions of the tank as a whole. Each mode has been excited to a certain amplitude 
and, in the absence of any additional external force, this amplitude must be 
maintained indefinitely (within the limitations of our linear inviscid theory). 

2. Development of equations 
The pzslsating Source and images 

The density-stratified fluid is assumed to have a constant Brunt-V&isal& fre- 
quency N ,  defined by 

AT2 = -qji.Jp. (1) 
30-2 
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Free surface wu 2 0 
:=a 

Y 
: = O  - -  -- Source plane - - - - - - - - -  

.i- %(.,, + N2 v ;I$ = 0 I $ , =  Il ' ,  

-- - Bottom of tank w,=O - / I  

FIGURE 1. Co-ordinate system and geometry. 

Here g is the acceleration due to gravity, ,3 is the steady-state mass density of 
the fluid and p, is the derivative of p with respect to x (vertical distance). The 
00-ordinates fixed in the tank are 2, y and x in the longitudinal, lateral and vertical 
directions respectively, and t represents time. At the surface of the fluid z = a, 
at the bottom of the tank z = - b and in the horizontal plane containing the 
source and images z = 0 (see figure 1) .  

In  the regions above and below the source plane the partial differential equa- 
tion to be satisfied is 

where V2 is the Laplacian operator, V i  is the two-dimensional Laplacian operator 
in the horizontal plane and w is the vertical velocity of the fluid. This equation 
was presented, for example, by Phillips (1969, p. 162, equation 5.2.7).  The 
secondary effect of density variation on fluid inertia has been neglected compared 
with its primary effect in producing a restoring force for vertical internal motions. 
This is the Boussinesq approximation (see Phillips 1969, p. 14,s  2.4). Equation ( 2 )  
is readily derived by applying small perturbations to the fundamental equations 
given by Lamb (1945, pp. 4 and 6). See Graham & Graham ( 1 9 7 1 ~ ) .  

The vertical velocity of the fluid is designated wu above the source plane and 
w, below. For internal waves wu must be approximately zero at the free surfam 
(see Miles 1971, p. 66). At the bottom of the tank wL must be zero. Across the 
source plane the perturbation pressure Ap must be continuous, where Ap is 
given by 

(3) 
It can easily be verified that the following expressions for wu and w, satisfy 
these requirements: 

w u = -  

v(w)  WL = -- 

en cos ( k a b )  sin [ka(a - z ) ]  cos ( k ,  6 - wt )  cos (k ,  y) 
sin [ka(a+ b)]  

c, O0 en cos (kcca) sin [ka( b + z ) ]  cos ( k ,  6 - wt)  cos ( k ,  y) 

- 2  (4) 

- ( 5 )  

4 w )  5 
2L,L, m = - m  n=O 

5 
2L1L, m=-m n=o sin [ka(a + b)]  

Here k, = mn/L, and k, = nn/L, are wavenumbers in the x and y directions, 
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k = (k t+k i )* ,  ct = [iV2/(w+ Uk, )2-  l]*, ,$ = x- Ut and en = $ for n = 0 while 
E, = 1 for n > 0. 5 is a longitudinal co-ordinate measured to the right from the 
moving pulsating source (of frequency w ) ,  which moves to the right at  velocity U.  
If we now evaluate wu - w, at z = 0 (i.e. in the source plane) we get 

m w  

(6) 

where em, = 1 for m = n = 0, em, = 4 for m = 0 or n = 0 with m $. n and 
emmn = 1 form, n > 0. 

In  the m summation, positive and negative terms have been combined to 
illustrate the superposition of waves moving to the right and waves moving to 
the left. This superposition produces standing waves in the 5 co-ordinate which 
sum to represent a doubly infinite array of sources moving to the right with 
velocity U .  (The strength v is the maximum volume per unit time introduced by 
any one source.) These sources are spaced 2L, apart in the 5 direction and 2L2 
apart in they direction. Lateral symmetry permits the insertion of tank side walls 
spaced 2 4  apart. However, the insertion of end walls must await the introduction 
of a reverse-motion array of sources. 

The sources which have been introduced here are pulsating as well as moving 
relative to the surrounding fluid. We have chosen the 'conventional' type? of 
moving source which is constructed from standing waves (in the moving co- 
ordinate system) of fluid-particle velocity normal to the source plane. 

40) wu - wL = - cos (wt )  C em, cos (mn-$/Ll) cos (nny/L,), 
LlL, m=O n=O 

The source which exists for afinite time 

In  order to construct a source (and image system) of constant strength which 
exists for a finite time, it is necessary to integrate over all values of w. If the ex- 
pressions for wu and w, are written in such a general fashion and wu - w, is 
evaluated at  z = 0, we get 

I m m  I r m  

where v*dw now has the dimensions of volume/time. Let t = 0 correspond to the 
centre of travel for the source (not necessarily the centre of the tank, which is 
later determined by the reverse solution added). If the source strength is to be 
zero except in the time interval -&T < t < &-, where the strength is to be vo, 

( 8 )  

then v*(w) is given by v sin(Qw7) v*(w) = 2 - 
7f +w 

(see Sommerfeld 1949, p. 297). The expression for wu for a source at 5 = 0 (and 
image system) travelling from left to right at  velocity U then becomes 

Q) sin ( 4 ~ )  cos ( k b )  sin [kcc(a - z) ]  cos ( k, 5- wt) du 
i w  sin [ka(a + b)]  . (9) 

f See previous discussion. 
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Reverse image 

Introduction of closed body and tank end walls 

For a closed body of length approximately I we need a source at  6 = + & l  and a 
sink at 6 = - 41. For this change 

cos(k,fl-wt) + 2sin(k,[-ot)sin (+k,l). (10) 

In  order to get planes of symmetry in which the tank end walls can be placed 
(at x = - i d  and x = - i d  +L,)  we now need to introduce a source (and image 
system) moving in the reverse direction with its centre of travel displaced a dis- 
tance d to the left (see figure 2).  We simply ask for a solution giving the same 
wu a t  x = - a’ - d as the forward solution gives a t  x = a’. With this change we get 

cos (k1(-- w t )  -t - 4sin ($7~~1)  cos (k ,x’ )  sin [k,(xi + Ut’) +w(t’- 47)], (11)  

where x’ is distance measured from the left tank end wall, x: is the distance of 
the body starting point from the left tank end wall and t’ is time measured from 
the starting time of the body. 

. 

Replacing the cos (klE - wt)  in (9) with the expression in (1  1) gives 

wu = - 2 
-2v, * to 

2 en cos (k2 y) sin (hk, I )  cos (k, x’ ) 
77LiL2 m=-m n=Q 

sin(8wT) cos(k~b)s in[ka(a-z )]s in[k , (x~+ Ut’) + w ( t ‘ - i ~ ) ] d w  
sin [ka(a + b)]  

.’I 
2 --03 

(12) 

This applies to a closed body of length approximately 1 which moves at  a uni- 
form velocity U for a prescribed time in a tank of length L, and width ZL,. 
The motion starts at  a distance xi from the left end wall at time t’ = 0 and con- 
tinues until t’ = T.  

In figure 3 the kl, w plane is shown. The combined summation over kl (or m) and 
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FIGURE 3. The k,, w plane. 

integration over w can be carried out more readily in skewed co-ordinates, and 
we rewrite wu as 

wu=- e,cos (k,y) sin ($k,E) cos (k,x’) 
-2v, -ao m 

TL, L, n=O m=--ao 

N-Ukl~~~(kab) s in  [ k a ( a - x ) ] s i n ( ~ W ? ) s i n [ k , ( x ~ +  Ut’)+w(t’-*?)]dw 
(1-u, &J sin [ka(a + b) ]  

cosh (ka’b) sinh [ka’(a - z) ]  sin ( 4 ~ 7 )  sin [kl(xL + Ut’) + w(t’ - QT)] do 
$w sinh [ka’(a + b)]  N - Uk, 

(13) 
where a = [N2/(0+ Uk1)2- 114, a’ = [l -ivy(@+ Uk1)2]4 (14) 

+f 
and, using symmetry,? the summation and integration are performed in the 
half-plane above w +  Ukl = 0 and doubled. Equation (13) corresponds to a 
‘particular integral’, and a ‘complementary function’ must be added to ensure 
that the fluid is completely undisturbed at  large negative times (i.e. before the 
body was put in motion). To do this we first evaluate (13) as t‘ approaches - 00. 

Evaluation as t‘ + - co 
The integrand now consists of a slowly varying function multiplying a function 
which oscillates rapidly about zero. Such functions interact weakly, and sub- 
stantial contributions to the integral occur (a) when the rapidly varying function 
ceases to be rapidly varying (e.g. at some stationary-phase points), or ( b )  when 

t Corresponding to reflexion in the origin. 
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the slowly varying function becomes rapidly varying (i.e. at  singular points). 
This case is of the latter type,? so we investigate the singular points defined by 

(15) 

sin [ka(a + b ) ]  = 0, 

or k(a  + 6) [N2/(wp + Uk,)2 - I]+ = p r  

or wr, + Uk, = N / [ 1  +p2n2/k2(a+ b)2]9.  

I f  we let w = up + 8 the contribution of any one singularity to the first integral 
in (1 3) becomes 

i 

For t’ -+ - co (with 7, the total time of the body motion, finite) 

/;.sin [s(t’ - *T)]  d8 - - -7r. 
6 

Then for large negative times or, in fact, any time prior to t‘ = 0,  wu becomest 

-4nuJV O0 m 

w -  2 c, cos ( k2y)  C sin ( &kl 1) cos (k ,x‘)  
- h , L , ( a + b ) 2 n = ~  m=O 

(p /k2)  cos [bpn/(a + b ) ]  sin [(a - z)pn/(a + b)] f3 

- t ’ )  - k,(xL + T U ) ]  +sin [El%: +ft’] 

(30s ( P d  N3 x c  
p =  0 

1 sin 

x[2 f - Ukl 

I. 1 sin [ f ( ~  - t ’ )  + k,(xi + T U ) ]  -sin [k,xL - ft’] 
2 f + Uk, 

-- 

Here f = N / [ 1  +p27r2/k2(a + b)74 and is the natural frequency of the tank mode 
designated by k andp (or, by m, n andp). yo, the source strength, may be replaced 
by UA,, where A ,  is the maximum cross-sectional area of the body. Note again 
that en = 8 for n = 0,  6,  = 1 for n > 0, L, = tank length, 2L2 = tank width, 
a + b = tank depth, 1 = body length, k, = mn/L,, k, = nr/L2, zc2 = (k: + k:), the 
body is in the plane z = 0, x’ = distance of observation point from left end wall, 
3.: = distance of starting point from left end wall, t‘ = time measured from 
starting time and T = total time of motion (see figure 4). 

For N / [  1 +pW/k2(a  + b)2]* - Uk,  2 0 waves travel at  nearly the body velocity, 
producing locally a pseudo-steady-state flow pattern relative to the body. 
Actually each natural tank mode considered individually is a standing wave. 
Travelling waves occur locally when two adjacent modes of similar amplitude 
approach a 90” phase-displacement in space and time. Only in a tank of infinite 
extent (relative to the region of interest) are the modes so closely spaced that 
one can speak of a travelling wave of fixed wavenumber. 

t See appendix. 
$ For any time after t’ = 7, wu = - 2 x (value given by (18)), as noted later. 
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c .Y’ (any point) 

YB’ ---I XB‘ = x,’ + Uf‘ 

Start Body End 

+ L1.- 

FIGURE 4. Final tank co-ordinate system. 
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3. Discussion of the solution 
The complete solution valid above the body for any time t’ before, during or 

after the body motion is obtained by subtracting (18) from (13). As t’++oo, 
or at any time after the body motion ceases, wu is given by - 2 times the right- 
hand side of (18). This latter expression appears to be the only one needed in 
practice.? If we wish to examine the internal wave system at some time t‘ before 
the body has stopped moving we can make a new calculation for 7 just less than 
t’, knowing that any motion of the body subsequent to the observation is 
irrelevant. The internal wave system is essentially the same immediately before 
and immediately after the body stops. The very low frequency character of the 
internal wave system ( N  being an upper bound to the frequency) prevents an 
immediate response to a sudden change such as the impulsive stopping of the 
body. It must be remembered however that the potential-flow-type field near 
the body collapses instantaneously as t’ passes through the value 7. 

If we confine our attention strictly to the internal wave system, then (18) 
(with the factor - 2  applied) should give the proper result for any t’ > 0 and 
any place in the tank above the body. (A similar expression is easily obtained for 
the lower region.) 

4. Examples 
The solution for wu (equation (18)) is a sum over the triply infinite set of 

characteristic modes for internal waves in the tank. Each mode is designated by 
its values of m, n and p ,  which are proportional to wavenumbers in the longi- 
tudinal, lateral and vertical directions. Since the amplitudes of these modes do 

t Except for studying the body shape and attendant potential-flow-type field near the 
body. 
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not fall off rapidly with increasing m, n and p ,  the first problem in working out 
an example is to limit the number of modes to be considered.? 

Modes with wavelengths of the order of the body thickness (or less) in the 
lateral and vertical directions are immediately suspect as to their magnitudes, 
because they would tend to create a distorted shape for the body, which has been 
defined only by its approximate length and volume. Similarly, the magnitudes 
of modes whose wavelengths in the longitudinal direction are as short as the 
body length are also questionable. To avoid this difficulty it would be necessary 
to  solve a much more complicated problem, prescribing a smooth rigid body 
shape maintained fixed throughout the body travel. A continuous (time-varying) 
distribution of sources and sinks throughout a small region of space would 
probably be required to achieve this. (Any convergence difficulties in the present 
solution are presumably associated with the fact that the expansion of a delta 
function is itself not convergent.) 

Since the contributions of very short wavelengths must be ignored in this 
solution, one might consider only the average value of wu throughout a small 
region of space. Even more simply, as we have done here, one may arbitrarily 
discard the short wavelength structure of the flow field by assigning upper limits 
to m, n andp, and concentrating attention on the longer wavelength structureof 
the flow field. 

The primary problem undertaken here is to determine when a quasi-steady- 
state condition exists in the tank relative to the body. This quasi-steady state 
must consist of a wave system which travels at nearly the body speed. No 
individual tank mode is a travelling wave, but two or more modes of similar 
wavelength and proper phase relation may simulate a travelling wave locally. 
Such modes must be approximately ‘resonant’ with the body speed in the Sense 
that f g Uk,. In  the following example we first consider modes such that 
If- Uk,J < 2nUi/L,. This excludes modes which, oscillating at their natural 
frequency, would get out of phase with the body motion by more than one corn- 
plete cycle while the body travels from one end of the tank to the other. (The 
limit on If- Uk,l must be re-examined for other examples.) 

For this example (with L, = tank length, L, = half-width and a + b = depth) 
the tank geometry is as follows: L,/L, = 30 and (a+b)/L, = 1.5. The Brunt- 
Vaisala frequency N is defined by NL,lnU = 5.0. The body length divided by 
tank length E/L, = &;,the body is at the half-depth (a = b)  and starts at the 
left end of the tank (3, = 0). wu is measured where it is a maximum, halfway 
between the body level and the surface (z  = +a). 

Figure 5(a)  shows the effect of considering four modes, m = 3, 4, 5 ,  6, with 
p = 2 and n = 2. These are the modes which are approximately resonant with 
the body speed within the limit previously specified. (n = 0 gives a negligible 
contribution here, and the omission of p and n values greater than 2 indicates 
that we are examining only the largest wavelength structure of the flow field.) 
The body starts at  the left end of the tank and moves with uniform speed. No 
observations of wu are made until the body reaches the middle of the tank, 
&/L, = 0.5. Then observations are made when the body is at 0.5, 0.6, 0.7 and 

t See appendix. 
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(b) 

F I ~ ~ E  5. wu vs. longitudinal distance from body for body at 0.5, 0.6, 0.7 and 0.8 of tank 
length (n = 2, p = 2) ;  z = +a, y = iLz .  (a)  rn = 3, 4, 5,  6 .  ( b )  m = 7, 8, 9, 10. 

0.8 of the tank length. These observations are made halfway out to the tank side 
wall (y = &) and both upstream and downstream of the body. Plotted in co- 
ordinates fixed in the body, the values of wvL,L,IUA, show a pronounced 
quasi-steady state relative to the body with secondary transient fluctuations 
indicated by the length of the vertical bars covering four observations. 

In  figure 5 ( b )  modes outside the resonant range are studied, m = 7, 8, 9, 10, 
with p = 2 and n = 2. These give rise to shorter wavelength fluctuations whose 
dominant characteristic is their transient nature. Second, there is a small steady- 
state type of contribution. 

For comparison in figure 5 ( a )  there is also shown the steady-state value, at  
x’ = x;, for a body travelling an infinite distance in an infinitely long tank. 
(The tank width is maintained at  ZL, and the depth at  a+b.) This result is 
obtainable from (18), by letting L, and r U  approach infinity, with t’ = r. 
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I 

FIGTJRE 6 (a). For legend see facing page. 

Alternatively the steady-state result for the infinitely long tank can be obtained 
from an earlier report (Graham & Graham 1 9 7 1 ~ ) .  In  the transverse plane con- 
taining the body the expression for wu is 

This is for any one mode defined by n and p ,  and k,, is given by 

The quasi-steady-state results shown in figure 5 (a) seem to be in good agree- 
ment with the steady-state point for the infinitely long tank. 

Figures 6(a)-(c) show the effect of introducing more modes (primarily addi- 
tional values of n and p )  and so including a somewhat smaller wavelength 
structure of the flow field than in figure 5. However these modes still conform 
approximately to the requirement that If- Uk,] < 2nU/L, and so are nearly 
resonant with the body speed. Also, figures 6(u)-(c) indicate the nature of the 
flow field at three lateral positions in the tank: y = 0, &L2 and L,. The vertical posi- 
tion of observation is still halfway between the body and the surface, at  z = $a. 
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(4 

FIGURE 6. w u  v8. longitudinal distance from body for body at 0.5, 0.6, 0.7 and 0.8 of 
tanklength(% = 0, 1 ,2 ,  3 , 4 ; p  = 2 , 6 ) ; ~  = &,m = 1 , 2 , 3 , 4 , 5 , 6 .  ( a ) y  = 0. ( b ) y  = +A2. 
(4 ?/ = LY 

wu L, L,IUA, is again plotted for positions ahead of and behind the body in 
body co-ordinates, and the length of the vertical bars indicates the range of 
values for observations made when the body is at 0-5, 0-6, 0.7 and 0.8 of the 
tank length. 

At y = 0 and y = 4L, a well-defined quasi-steady state appears, The trough 
at the body for y = 0 is apparently well behind the body for y = +Lz, so that the 
inclination of the wave to the line of motion is roughly 4". At y = L, the quasi- 
steady state is not so well defined. Perhaps this should be anticipated because the 
basic wave system created by the body at the centre-line tends to encounter the 
side wall far behind the body and near the end of the tank. If the earliest observa- 
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tion (when the body is at  0.5 of the tank length) is omitted the definition seems 
much better. This is indicated by shading the bars only over the extent of the 
0.6, 0.7 and 0.8 observations. 

5. The similarity parameter 
The parameter iVLl/nU serves as an approximate similarity parameter for the 

large-scale structure of the flow field in many cases of interest. It is necessary 
that the wave crests be inclined at  a small angle to the direction of motion, so 
that k g n7r/L2, and that the body length be small relative to the wavelength in 
the direction of motion. Generally these conditions are satisfied as in the present 
examples but not, o f  course, in extreme cases where transversal waves appear. 

When the value of NL,InU is maintained (for example, by halving N and 
doubling L,) each tank mode has its amplitude multiplied by the same factor 
and its wavelength adjusted in proportion to the tank length. The complete wave 
systems are then similar and the magnitude of the transient oscillations relative 
to the quasi-steady state is maintained. Thus if N is halved (or U doubled) L, 
must be doubled to maintain the same relation between transient and steady- 
state values for a given body moving over the same fraction of the tank length. 
(The tank depth and width and body depth are of course held constant. The 
above analysis applies when the body is in motion (i.e. when t' = 7). For t' > 7 
similarity is preserved by holding t'N, rN and NL&U constant.) 

The effect of reducing the magnitude of NLJnU is to increase the departure 
from steady-state conditions. This is illustrated in figure 7, where the average 
transient amplitude over the maximum quasi-steady-state value is used as a 
measure of fluctuation. For NL,InU = 5 (corresponding to the preceding ex- 
amples) this fluctuation is only & 10 %. For NL,/nU = 1 (and other parameters 
the same as in preceding examples) the fluctuation has grown to 2 50 yo. In  
this latter case m = 1 (wavelength = 2 x tank length) should be the dominant 
mode but figure 7 (b )  shows little evidence of this. Thus the length of the tank is 
clearly inadequate for obtaining a close approach to steady-state conditions in 
this case. (The limited number of modes considered here still covers the resonant 
range adequately.) 

Appendix. Notes on the methods of analysis 
(i) The analytical procedures used here are adopted to facilitate the develop- 

ment from the author's own point of view, which is essentially physical rather 
than rigorously mathematical. However, the methods, though unconventional, 
have a sound basis in classical mathematics. 

Laplace transforms probably could be used, although the necessity of ter- 
minating the body motion as well as initiating it might slightly complicate their 
use. (Termination of the body motion simplifies the present analysis, and makes 
possible the investigation of the wave system after the body stops.) 

(ii) Convergence questions arise for the triple summation used. However, 
examination of the large-scale structure of the flow field seems quite feasible, 
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FIGURE 7. Effect of similarity parameter NL,/nU on the transient fluctuations. 1~ = 2, 
p = 2 ;  y = &L2. (a) NL,/nU = 5.0, m = 3, ..., 10,fluctuation = k 10 %. (a) NL,/nU = 1.0, 
m = 1, 2, 3, fluctuation = k 50%. 

the convergence problem being associated with the many omitted modes of 
successively smaller wavelengths (i.e. the Jine structure of the flow field). 

(iii) It was pointed out by a referee that, for It’I large, stationary-phase points 
may appear in the numerator of the first integral in ( 13). These points appear near 
the limits of integration, one of them, for example, corresponding to w -+ - Uk,, 
so that a + 00. However, such analysis leaves a rapidly oscillating function in 
the denominator, and the criterion for significant contributions to the integral 
(i.e. that the rapidly varying part of the integrand becomes slowly varying) is 
not satisfied. More generally, one can perhaps reason as follows. The first integral 
in (13) can be rewritten as 

. . .dw. 
c-0 limSN -Uk,+s - lJkl- 

Por each 6 a lower bound can be set on It’l such that It’I is always much greater 
than terms such as d(kab)/dw. It is then possible for E to approach zero and It’l 
to appiioach infinity in such a fashion that stationary-phase points never appear 
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within (or on the boundaries of) the region of integration. This applies in the 
limit 6 -+ 0 since, although It’I and d(kab)/dw both become infinite, It’I is, 
nevertheless, much greater throughout the closed region of integration. 

(iv) If the fluid is assumed to be homogeneous, incompressible and of infinite 
extent, the basic body shape created by a conventional source-sink pair is a 
Rankine ovoid. Instantaneous creation of the source-sink pair apparently creates 
this shape instantaneously, according to a preliminary mathematical analysis. 
This is consistent with the infinite communication speed (speed of sound) in an 
incompressible fluid. 

The body actually created, being ‘limp’, is slightly distorted by the presence 
of the tank walls and the large-scale wave structure. This distortion is somewhat 
time dependent, since transient internal waves exist and the end walls of the 
tank are not a t  a fixed distance from the body. The small-scale internal waves, 
since they create a ‘rough’ and thoroughly unrealistic body, are discarded. 
A much more detailed and difficult analysis would probably be required to define 
the fine structure of the flow field for a smooth rigid body. 
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